7 research outputs found

    A three-dimensional orthogonal laser velocimeter for the NASA Ames 7- by 10-foot wind tunnel

    Get PDF
    A three-component dual-beam laser-velocimeter system has been designed, fabricated, and implemented in the 7-by 10-Foot Wind Tunnel at NASA Ames Research Center. The instrument utilizes optical access from both sides and the top of the test section, and is configured for uncoupled orthogonal measurements of the three Cartesian coordinates of velocity. Bragg cell optics are used to provide fringe velocity bias. Modular system design provides great flexibility in the location of sending and receiving optics to adapt to specific experimental requirements. Near-focus Schmidt-Cassegrain optic modules may be positioned for collection of forward or backward scattered light over a large solid angle, and may be clustered to further increase collection solid angle. Multimode fiber optics transmit collected light to the photomultiplier tubes for processing. Counters are used to process the photomultiplier signals and transfer the processed data digitally via buffered interface controller to the host MS-DOS computer. Considerable data reduction and graphical display programming permit on-line control of data acquisition and evaluation of the incoming data. This paper describes this system in detail and presents sample data illustrating the system's capability

    Neural correlates of semantic number: A cross-linguistic investigation

    No full text
    International audienceOne aspect of natural language comprehension is understanding how many of what or whom a speaker is referring to. While previous work has documented the neural correlates of number comprehension and quantity comparison, this study investigates semantic number from a cross-linguistic perspective with the goal of identifying cortical regions involved in distinguishing plural from singular nouns. Three fMRI datasets are used in which Chinese, French, and English native speakers listen to an audiobook of a children's story in their native language. These languages are selected because they differ in their number semantics. Across these languages, several well-known language regions manifest a contrast between plural and singular, including the pars orbitalis, pars triangularis, posterior temporal lobe, and dorsomedial prefrontal cortex. This is consistent with a common brain network supporting comprehension across languages with overt as well as covert number-marking

    Neural Correlates of Object-Extracted Relative Clause Processing Across English and Chinese

    No full text
    Abstract Are the brain bases of language comprehension the same across all human languages, or do these bases vary in a way that corresponds to differences in linguistic typology? English and Mandarin Chinese attest such a typological difference in the domain of relative clauses. Using functional magnetic resonance imaging with English and Chinese participants, who listened to the same translation-equivalent story, we analyzed neuroimages time aligned to object-extracted relative clauses in both languages. In a general linear model analysis of these naturalistic data, comprehension was selectively associated with increased hemodynamic activity in left posterior temporal lobe, angular gyrus, inferior frontal gyrus, precuneus, and posterior cingulate cortex in both languages. This result suggests the processing of object-extracted relative clauses is subserved by a common collection of brain regions, regardless of typology. However, there were also regions that were activated uniquely in our Chinese participants albeit not to a significantly greater degree. These were in the temporal lobe. These Chinese-specific results could reflect structural ambiguity-resolution work that must be done in Chinese but not English object-extracted relative clauses

    The Language of Westernization in Legal Commentary

    No full text
    corecore